He?

Bolondok hajóján : zene mellett, minden "behozott" és magánvélemény, esemény, történet, téma ütközhet az Életről. Szabadon. (Még!) :-DDD

sörcsap nagybaszónak

Miva'?

 

 

És a főd forog tovább!

 

Beszótak:

Esik-e wazze?


Számojjá csapos!

Naptár

november 2024
Hét Ked Sze Csü Pén Szo Vas
<<  < Archív
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

Egy nagyszerű videó a számok és a természet összefüggéseiről

2020.03.05. 06:50 guma

Számok a természet mögött

A következő videó nagyszerűen bemutatja az egységet a tudomány és az élővilág között. Minden matematikát tanulni kezdő iskolásnak ilyen és hasonló videók megtekintésével lehetne kedvet csinálni a tanuláshoz. A videót megtekintve mindenkiben tudatosulhat, hogy a számok és a matematika világa lépten-nyomon körülvesz minket. Cristóbal Vila kisfilmje remekül mutatja be  a természetben előforduló, matematikailag leképezhető mintázatokat.

Íme a videó:

https://www.youtube.com/watch?v=kkGeOWYOFoA

 

A videóban szereplő törvényszerűségek

Vegyük sorra a kisfilmben szereplő matematikai elméleteket, törvényszerűségeket, számsorokat és arányokat. Természetesen mindezt csak szigorú tömörséggel, és emészthetően!

Fibonacci számsor

A természetben számtalan alakzat leírása követi az úgynevezett Fibonacci számsort, például a csigák háza, az emberi test, vagy egy hétköznapi brokkoli. A Fibonacci számsorozatban minden szám az első kettő után – az azt megelőző kettő összege. Így tehát a számsorozat: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 stb. Minél későbbi tagjait vesszük a sorozatnak, két egymást követő szám aránya annál inkább az aranymetszéshez fog közelíteni (ami megközelítőleg 1:1,618 vagy 0,618:1).

Ez jól megfigyelhető a filmben a nautilus (tengeri csiga) házának felépítésén keresztül is. Leonardo Fibonacci 1202-ben, a szaporodó nyulak számán gondolkodva alkotta meg a számsort. A híres matematikus arról is nevezetes, hogy ő terjesztette el az arab számokat Európában a Liber Abaci című könyvével.

Aranymetszés

Az aranymetszés vagy aranyarány, a film egy másik meghatározó pontja. Ez egy olyan arányosság, ami a természetben és művészetben is gyakran megjelenik, természetes egyensúlyt teremtve a szimmetria és az aszimmetria között. A számsor különlegessége, hogy bár nem mértani sor, azaz a számok hányadosa nem állandó, de ahogy egyre nagyobb számokat nézünk, úgy közeledik a hányados az 1,618-hoz, amelyet ma aranymetszésként ismerünk (két szakasznál a kisebb úgy aránylik a nagyobbhoz, mint a nagyobb a kettő összegéhez).

Voronoi sokszögek

A videó harmadik szegmense a voronoi sokszögek, vagy cellák. A szitakötő szárnyának mintázata ez alapján épül fel, amit a film is modellez. A Delaunay háromszögelés és a Voronoi sokszögek már a 20. század matematikájának világa, a 2 és 3 dimenziós térinformatikában alkalmazzák.

Szólj hozzá!

A bejegyzés trackback címe:

https://offforever.blog.hu/api/trackback/id/tr9415344366

Kommentek:

A hozzászólások a vonatkozó jogszabályok  értelmében felhasználói tartalomnak minősülnek, értük a szolgáltatás technikai  üzemeltetője semmilyen felelősséget nem vállal, azokat nem ellenőrzi. Kifogás esetén forduljon a blog szerkesztőjéhez. Részletek a  Felhasználási feltételekben és az adatvédelmi tájékoztatóban.

Nincsenek hozzászólások.
süti beállítások módosítása